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Abstract: We study the dimensional reduction of 5D, N = 2 Yang-Mills-Einstein su-

pergravity theories (YMESGT) coupled to tensor multiplets. The resulting 4D theories

involve first order interactions among tensor and vector fields with mass terms. If the 5D

gauge group, K, does not mix the 5D tensor and vector fields, the 4D tensor fields can be

integrated out in favor of the 4D vector fields and the resulting theory is dual to a stan-

dard 4D YMESGT (Integrating out the vector fields in favor of tensor fields instead seems

to require nonlocal field redefinitions). The gauge group has a block diagonal symplectic

embedding and is a semi-direct product of the 5D gauge group K with a Heisenberg group

HnT +1 of dimension nT + 1, where nT is the number of tensor fields in five dimensions.

There exists an infinite family of theories, thus obtained, whose gauge groups are pp-wave

contractions of the simple noncompact groups of type SO∗(2N). If, on the other hand, the

5D gauge group does mix the 5D tensor and vector fields, the resulting 4D theory is dual to

a 4D YMESGT whose gauge group does, in general, not have a block diagonal symplectic

embedding and involves additional topological terms. The scalar potentials of the dimen-

sionally reduced theories studied in this paper naturally have some of the ingredients that

were found necessary for stable de Sitter ground states in earlier studies. We comment on

the relation between the known 5D and 4D, N = 2 supergravities with stable de Sitter

ground states.
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1. Introduction

Four-dimensional supergravity theories with massive antisymmetric tensor fields1 have re-

cently received a lot of attention [2 – 4] due to their relevance for string compactifications

with background fluxes [5] or Scherk-Schwarz generalized dimensional reduction [6].

1For some earlier work, see also [1].
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In conventional string compactifications without background fluxes or geometric twists,

massless two-forms in the effective 4D theory naturally descend from the various types of

p-form fields in the 10D or 11D actions of string or M-theory. A massless two-form in 4D is

Hodge dual to a massless scalar field, and upon such a dualization, the 4D effective theory is

readily expressed in terms of scalar fields and vector fields only (plus the gravitational sector

and the fermions). In an N = 2 compactification, the resulting theories then describe the

coupling of massless vector and hypermultiplets to supergravity without gauge interactions.

When fluxes or geometric twists are switched on, however, the low energy effective

theories typically contain gauge interactions and mass deformations, which in turn entail

non-trivial scalar potentials.2 In the presence of mass deformations for two-form fields, the

massive two-form can no longer be directly dualized to a scalar field. Instead, a massive

two-form is dual to a massive vector field [9], and the relation to the standard formulation

of 4D gauged supergravity in terms of scalar fields and vector fields [10, 11] is, a priori, less

clear. In the well understood cases, this relation involves the gauging of axionic isometries

on the scalar manifold, upon which the axionic scalar field can be “eaten” by a vector field

to render it massive [2 – 4].

In the context of 4D, N = 2 supergravity, such mass deformations have been primarily

studied for two-forms that, before the deformation, arise from dualizations of scalars of the

quaternionic Kähler manifold of the hypermultiplet sector [2]. It was only very recently

that such mass deformations were also studied for tensor fields that are dual to scalars of

the special Kähler manifold [12].

Massive tensor fields also play an important rôle in 5D, N = 2 gauged supergravity [13].

In five dimensions, massless tensor fields are dual to massless vector fields when they are

not charged with respect to any local gauge symmetry. In ungauged supergravity, two-

form fields are therefore usually replaced by vector fields [14]. When gauge interactions are

turned on, however, the equivalence between two-form fields and vector fields is typically

lost, and one has to distinguish between them more carefully [15 – 18, 13, 19]. In particular,

two-form fields that transform non-trivially under some gauge group are possible, and such

two-forms are no longer equivalent to vector fields.3 This can be understood from the fact

that the charged tensor fields acquire a mass, and massive tensors in 5D have a different

number of degrees of freedom than vectors. In the conventional formulation of such 5D

gauged supergravity theories with tensor fields, the tensor fields BM
µν enter the Lagrangian

via first order terms of the form [16 – 18, 13, 19]

ΩMNBM ∧ DBN (1.1)

where ΩMN is a symplectic metric, DBN = dBN + gΛN
IMAI ∧ BM , and ΛN

IM denotes

the transformation matrix of the tensor fields with respect to the gauge group gauged

2Gauge interactions and non-trivial scalar potentials can also occur when the compactifying manifold

exhibits certain types of singularities or is close to other special points in the moduli space, corresponding,

e.g. to self-dual radii of circles etc. These gauge interactions and potentials are often associated with

additional light states, which, in the case of singularities, are typically localized at those singularities as e.g.

in [7] (for a complete treatment of a concrete example in the language of gauged supergravity see also [8]).
3A reformulation of 5D, N = 8 gauged supergravity which treats vector and tensor fields more symmet-

rically has recently been given in [20].
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by the vector fields AI
µ and with gauge coupling g. Reiterating the resulting field equa-

tions, half of the tensors can be eliminated, and one obtains second order field equa-

tions for the remaining ones with mass terms due to a BM ∧ ∗BN coupling in the La-

grangian.

Whereas the dimensional reduction of ungauged 5D supergravity to 4D has been stud-

ied quite extensively in the literature, surprisingly little is known about the dimensional

reduction of 5D gauged supergravity with tensor fields. For example, the N = 8 AdS gravi-

ton supermultiplet involves both vector and tensor fields in five dimensions [21]. Hence

gauging the maximal supergravity in five dimensions requires that some of the vector

fields of the ungauged theory be dualized to tensor multiplets [16, 17]. Remarkably, the

SU(3, 1) gauged N = 8 supergravity constructed in [22] has a stable ground state that

preserves two supersymmetries and has a vanishing cosmological constant. The general

properties of the compactification of the SU(3, 1) gauged 5D, N = 8 supergravity down

to four dimensions were originally investigated in [22]. More recently, a more detailed

analysis of the dimensional reduction of 5D gauged N = 8 supergravity down to four

dimensions was given by Hull [23], but to the best of our knowledge, a complete anal-

ysis, in particular for N = 2, has never been given. As the naive dimensional reduc-

tion is expected to involve massive two-forms of some sort, it is important to close this

gap in the literature and to compare the result with the current work on 4D massive

two-forms [3, 2, 4, 20] and the standard formulation of gauged supergravity theories in

4D [10, 11].

As the resulting theory only involves the (very) special Kähler gemetry of the vector

multiplet sector in 4D, and since the tensors are expected to transform nontrivially under (in

general non-Abelian) gauge symmetries, the resulting theories are expected to be different

from the ones studied in the recent works [2] on hypermultiplet scalars.

The dimensional reduction of 5D, N = 2 gauged supergravity with tensor multiplets

to 4D could also be interesting for the recent attempts to find stable de Sitter ground

states in extended supergravity theories [24 – 27]. So far, the only known examples for

such stable de Sitter vacua were found in 5D, N = 2 gauged supergravity theories with

tensor fields [24, 27] and in certain 4D, N = 2 gauged supergravity theories [26]. As

for the latter type of theories, the authors of [26] identified a number of ingredients that

were necessary to obtain stable de Sitter vacua. These include non-Abelian non-compact

gauge groups, de Roo-Wagemans rotation angles [28] and gaugings of subgroups of the

R-symmetry group. Interestingly, gaugings of the R-symmetry group also play a rôle for

the known 5D theories with stable de Sitter vacua [24, 27]. Also, the known 5D examples

involve non-compact gauge groups. However, in 5D, these groups can be Abelian and still

give rise to stable de Sitter vacua. Furthermore, the known 5D models involve charged

tensor multiplets, whereas de Roo-Wagemans rotation angles are not well-defined in 5D.

One of the important results of our paper is that the dimensional reduction of 5D, N = 2

gauged supergravity with tensor multiplets to 4D always leads to non-Abelian non-compact

gauge groups, no matter what the 5D gauge group is. Furthermore, one always introduces

something similar to de Roo-Wagemans rotation angles in this reduction process. We

do not consider gaugings of the R-symmetry group in this paper, but putting the above

– 3 –
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together, one might wonder whether the dimensionally reduced 5D theories with tensor

fields could give rise to 4D stable de Sitter vacua, perhaps after switching on R-symmetry

gaugings and/or suitable truncations or extensions.

Motivated by these and other possible applications, we will, in this paper, system-

atically study the dimensional reduction of 5D, N = 2 gauged supergravity with tensor

multiplets to 4D.

The outline of this paper is as follows. In section 2, we briefly recapitulate the structure

of 5D, N = 2 ungauged Maxwell-Einstein supergravity theories (MESGTs). In section 3,

we review the gaugings of these theories which require the introduction of tensor fields.

Here, two cases are to be distinguished: (i) The vector fields of the ungauged theory trans-

form in a completely reducible representation of the prospective gauge group, or (ii) they

form a representation that is reducible, but not completely reducible [29]. In section 4, we

dimensionally reduce the theories of type (i) to 4D. Section 5 discusses the rôle played by

the massive two-forms and vector fields in the resulting 4D theories. The dimensionally

reduced theories have a first order interaction between two-form and vector fields that is

reminiscent of the Freedman-Townsend model [30] and looks like a concrete realization of

the formalism of [12]. We then eliminate the tensor fields in favor of vector fields, which

are indeed massive. The opposite elimination of the vector fields in terms of the tensor

fields meets some difficulties and might be possible only in a rather non-trivial way. In

section 6, we show that, after suitable symplectic rotations, the resulting theory without

the two-forms can be mapped to a standard gauged supergravity theory in 4D in which the

gauge group has a block diagonal symplectic embedding. This theory has a gauge group of

the form (K nHnT +1), which is the semidirect product of the 5D gauge group K with the

(nT +1)-dimensional Heisenberg group HnT +1 generated by nT translation generators and

a central charge (nT denotes the number of tensor multiplets in five dimensions, which is

always even). The case (ii) of not completely recducible representations is briefly sketched

in section 6.3. The dimensional reduction of theories with completely reducible repre-

sentations in 5D parallels the situation in the N = 8 theory described by Hull in [23], as

explained in section 7, where we also comment on the relation to the “unified” supergravity

theories studied in [31]. In section 8, we study some properties of the scalar potential and

comment on the relation to extended supergravity theories with stable de Sitter ground

states. Appendix A, finally, contains some details of the dimensional reduction.

2. 5D, N = 2 Maxwell-Einstein supergravity theories

Five-dimensional minimal supergravity can be coupled to vector, tensor and hypermulti-

plets [14, 32, 33, 13, 34, 35, 29]. Hypermultiplets are irrelevant for this paper and will

henceforth be ignored. In five dimensions, massless uncharged vector fields and massless

uncharged two-form fields are dual to one another. At the level of ungauged supergravity

theories, the distinction between vector and tensor multiplets is therefore unnecessary, and

one can, without loss of generality, dualize all tensor fields to vector fields. These theories

are often referred to as “Maxwell-Einstein supergravity theories” (“MESGTs”) and were

first constructed in [14]. Our notation in this paper follows that of [14, 13], except that we
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will put a hat on all five-dimensional spacetime and tangent space indices, as well as on

all fields that decompose nontrivially into four-dimensional fields, as will become obvious

below.

The 5D, N = 2 supergravity multiplet consists of the fünfbein êm̂
µ̂ , two gravitini ψ̂i

µ̂

(i = 1, 2) and one vector field Âµ̂ (the “graviphoton”). A vector multiplet contains a vector

field Âµ̂, two “gaugini” λ̂i and one real scalar field, ϕ. Coupling ñ vector multiplets to

supergravity, the total bosonic field content is then

{êm̂
µ̂ , ÂĨ

µ̂, ϕx̃},

where, as usual, the graviphoton and the ñ vector fields from the ñ vector multiplets have

been combined into one (ñ + 1)-plet of vector fields ÂĨ
µ̂ (Ĩ = 1, . . . , ñ + 1). The indices

x̃, ỹ, . . . denote the curved indices of the ñ-dimensional target manifold, M(5), of the scalar

fields.

The bosonic part of the Lagrangian is given by (for the fermionic part and further

details, see [14])

L(5) = −1

2
êR̂ − 1

4
ê
◦
a

Ĩ J̃ F̂ Ĩ
µ̂ν̂F̂

J̃ µ̂ν̂ − ê

2
gx̃ỹ(∂µ̂ϕx̃)(∂µ̂ϕỹ)

+
1

6
√

6
CĨ J̃K̃ ε̂µ̂ν̂ρ̂σ̂λ̂F̂ Ĩ

µ̂ν̂F̂
J̃
ρ̂σ̂ÂK̃

λ̂
(2.1)

where ê and R̂ denote, respectively, the fünfbein determinant and scalar curvature of

spacetime. F̂ Ĩ
µ̂ν̂ ≡ 2∂[µ̂ÂĨ

ν̂] are the standard Abelian field strengths of the vector fields ÂĨ
µ̂.

The metric, gx̃ỹ, of the scalar manifold M(5) and the matrix
◦
a

Ĩ J̃ both depend on the scalar

fields ϕx̃. The completely symmetric tensor CĨ J̃K̃ , by contrast, is constant.

The entire N = 2 MESGT (including the fermionic terms and the supersymme-

try transformation laws that we have suppressed) is uniquely determined by CĨ J̃K̃ [14].

More explicitly, CĨ J̃K̃ defines a cubic polynomial, V(h), in (ñ + 1) real variables

hĨ (Ĩ = 1, . . . , ñ + 1),

V(h) := CĨ J̃K̃hĨhJ̃hK̃ . (2.2)

This polynomial defines a metric, aĨ J̃ , in the (auxiliary) space R
(ñ+1) spanned by the hĨ :

aĨ J̃(h) := −1

3

∂

∂hĨ

∂

∂hJ̃
lnV(h) . (2.3)

The ñ-dimensional target space, M(5), of the scalar fields ϕx̃ can then be represented as

the hypersurface [14]

V(h) = CĨ J̃K̃hĨhJ̃hK̃ = 1 , (2.4)

with gx̃ỹ being the pull-back of (2.3) to M(5):

gx̃ỹ(ϕ) =
3

2
(∂x̃hĨ)(∂ỹh

J̃ )aĨ J̃ |V=1 . (2.5)

Finally, the quantity
◦
a

ĨJ̃(ϕ) appearing in (2.1), is given by the componentwise restriction

of aĨ J̃ to M(5):
◦
a

Ĩ J̃(ϕ) = aĨ J̃ |V=1 .

– 5 –
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3. Charged tensor fields in five dimensions

In the previous section, we considered 5D, N = 2 ungauged supergravity theories, in which

all potential tensor fields can be dualized to vector fields, and the whole theory can be

expressed in terms of vector fields only. In the presence of gauge interactions, however,

this equivalence between vector and tensor fields generally breaks down, and one carefully

has to distinguish between them [13].

In the Maxwell-Einstein supergravity theories of the previous section, there are, in

principle, the options for two types of possible gauge groups. One type corresponds to the

gauging of a subgroup of the R-symmetry group, SU(2)R, which acts on the index i of

the fermions. This type of gauging is irrelevant for the present analysis and will no longer

be considered in this paper, except for a brief mentioning in section 8. The other type of

gauging correspond to gaugings of symmetries of the tensor CĨ J̃K̃ . As CĨJ̃K̃ determines the

entire supergravity theory, such symmetries, if they exist, are automatically symmetries of

the whole Lagrangian, and in particular, they are isometries of the scalar manifold M(5).

We denote by G the group of linear transformations of the hĨ and ÂĨ
µ̂ that leave the tensor

CĨ J̃K̃ invariant. They are generated by infinitesimal transformations of the form

hĨ → M Ĩ
(r)J̃

hJ̃ , ÂĨ
µ̂ → M Ĩ

(r)J̃
ÂJ̃

µ̂ (3.1)

with

M Ĩ′

(r)(ĨCJ̃K̃)Ĩ′ = 0 .

Here, r = 1, . . . ,dim(G) counts the generators of G.

In order to turn a subgroup K ⊂ G into a local (i.e., Yang-Mills-type) gauge symmetry,

the (ñ + 1)-dimensional representation of G defined by the action (3.1) has to contain the

adjoint representation of K as a subrepresentation. If this is the case, there are two

possibilities:

(i) The decomposition of the (ñ + 1)-dimensional representation of G with respect to K

is completely reducible.

(ii) The decomposition of the (ñ + 1)-dimensional representation of G with respect to K

is reducible, but not completely reducible.

Case (i), which is always the case for all connected semisimple and for all compact

gauge groups, was analyzed in [13]. The second possibility (ii) has been later studied

in [29]. We will first consider the first case (i), and later comment on the second case in

section 6.3.

If the (ñ+1)-dimensional representation of G is completely reducible, the vector fields

ÂĨ
µ̂ decompose into a direct sum of vector fields ÂI

µ̂ (I = 1, . . . , nV = dim K) in the adjoint

of K ⊂ G plus possible additional non-singlets ÂM
µ̂ (M = 1, . . . , nT = (ñ + 1 − nV )) of

K.4 In order for the gauging of K to be possible, the non-singlet vectors ÂM
µ̂ have to be

4If there are also singlets of K in the (ñ + 1) of G, we include them in the set of vector fields in the

adjoint of (an appropriately enlarged) K, where they simply correspond to Abelian factors under which

nothing is charged.

– 6 –
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converted to antisymmetric tensor fields B̂M
µ̂ν̂ prior to the gauging [13]. We denote by fK

IJ

the structure constants of the gauge group K ⊂ G and use ΛN
IM for the K-transformation

matrices of the tensor fields B̂M
µ̂ν̂ . The transformation matrices ΛN

IM of the tensor fields

have to be symplectic with respect to an antisymmetric metric ΩMN :

ΛN
IMΩNP + ΛN

IP ΩMN = 0 (3.2)

and are related to the coefficients CIMN of the CĨ J̃K̃ tensor via

ΛN
IM =

2√
6
ΩNP CIMP ⇐⇒ CIMN =

√
6

2
ΩMP ΛP

IN , (3.3)

where ΩMNΩNP = δP
M .

The transformation matrices M J̃
(I)K̃

of eq. (3.1) that correspond to the subgroup K ⊂ G

consequently decompose as follows

M J̃
(I)K̃

=

(

fJ
IK 0

0 ΛN
IM

)

. (3.4)

Denoting the K gauge coupling constant by g, the Yang-Mills field strengths F̂I
µ̂ν̂ read

F̂I
µ̂ν̂ ≡ 2∂[µ̂ÂI

ν̂] + gf I
JKÂJ

µ̂ÂK
ν̂ , (3.5)

and the covariant derivatives of the tensor fields are defined by

D̂[µ̂B̂M
ν̂ρ̂] ≡ ∂[µ̂B̂M

ν̂ρ̂] + gÂI
[µ̂ΛM

IN B̂N
ν̂ρ̂]. (3.6)

It is sometimes useful to combine the field strengths F̂I
µ̂ν̂ and the tensor fields B̂M

µ̂ν̂ into an

(ñ + 1)-plet of two-forms,

ĤĨ
µ̂ν̂ := (F̂I

µ̂ν̂ , B̂
M
µ̂ν̂) (3.7)

Using the K-covariant derivative of the scalars given by

D̂µ̂ϕx̃ ≡ ∂µ̂ϕx̃ + gÂI
µ̂K x̃

I , (3.8)

where K x̃
I denotes the Killing vectors on M(5) that correspond to K ⊂ G, the bosonic part

of the Lagrangian then reads [13]

L(5) = −1

2
êR̂ − 1

4
ê
◦
a

ĨJ̃ĤĨ
µ̂ν̂ĤJ̃µ̂ν̂ − ê

2
gx̃ỹ(D̂µ̂ϕx̃)(D̂µ̂ϕỹ)

+
1

6
√

6
CIJK ε̂µ̂ν̂ρ̂σ̂λ̂

{

F̂ I
µ̂ν̂F̂

J
ρ̂σ̂ÂK

λ̂
+

3

2
gF̂ I

µ̂ν̂Â
J
ρ̂ (fK

LF ÂL
σ̂ ÂF

λ̂
)

+
3

5
g2(fJ

GHÂG
ν̂ ÂH

ρ̂ )(fK
LF ÂL

σ̂ ÂF

λ̂
)ÂI

µ̂

}

+
1

4g
ε̂µ̂ν̂ρ̂σ̂λ̂ΩMN B̂M

µ̂ν̂D̂ρ̂B̂
N

σ̂λ̂
− êg2P (T ). (3.9)

Here, the scalar potential P (T ) is given by

P (T ) =
9

8

◦
aMN (ΛM

JP hJhP )(ΛN
IQhIhQ). (3.10)
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4. The dimensional reduction to four dimensions

In this section, we dimensionally reduce the theories described in the previous sections to

four dimensions. For the sake of clarity, and to set up our notation, let us first recapitulate

the dimensional reduction of the ungauged MESGTs without tensor fields of section 2.

4.1 The ungauged MESGTs and (very) special Kähler geometry

The dimensional reduction of the bosonic sector of 5D, N = 2 MESGTs to four dimensions

was first carried out in [14] and further studied in [36].

4.1.1 The reduced action

We split the fünfbein as follows

êm̂
µ̂ =

(

e−
σ
2 em

µ 2Wµeσ

em
5 = 0 eσ

)

, (4.1)

which implies ê = e−σe, where e = det(em
µ ). The Abelian field strength of Wµ will be

denoted by Wµν :

Wµν ≡ 2∂[µWν]. (4.2)

The vector fields ÂĨ
µ̂ are decomposed into a 4D vector field, AĨ

µ, and a 4D scalar, AĨ , via

ÂĨ
µ̂ =

(

ÂĨ
µ

ÂĨ
5

)

=

(

AĨ
µ + 2WµAĨ

AĨ

)

. (4.3)

In the following, all 4D Abelian field strengths F Ĩ
µν refer to AĨ

µ, which is the invariant

combination with respect to the U(1) from the compactified circle:

F Ĩ
µν ≡ 2∂[µAĨ

ν]. (4.4)

The dimensionally reduced action of the ungauged theory (i.e., of eq. (2.1)) is then

e−1L(4) = −1

2
R − 1

2
e3σWµνW µν − 3

4
∂µσ∂µσ

−1

4
eσ ◦

a
Ĩ J̃(F Ĩ

µν + 2WµνAĨ)(F J̃µν + 2W µνAJ̃)

−1

2
e−2σ ◦

a
Ĩ J̃(∂µAĨ)(∂µAJ̃) − 3

4

◦
a

ĨJ̃(∂µhĨ)(∂µhJ̃)

+
e−1

2
√

6
CĨ J̃K̃εµνρσ

{

F Ĩ
µνF J̃

ρσAK̃ + 2F Ĩ
µνWρσAJ̃AK̃

+
4

3
WµνWρσAĨAJ̃AK̃

}

(4.5)

– 8 –
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4.1.2 (Very) special Kähler geometry

This can be recast in the form of special Kähler geometry (in fact, “very special” Kähler

geometry in the terminology introduced in [37]) as follows [14]. Define complex coordinates

zĨ :=
1√
3
AĨ +

i√
2
h̃Ĩ (4.6)

where

h̃Ĩ := eσhĨ . (4.7)

These (ñ+1) complex coordinates zĨ can be interpreted as the inhomogeneous coordinates

corresponding to the (ñ + 2)-dimensional complex vector

XA =

(

X0

X Ĩ

)

=

(

1

zĨ

)

. (4.8)

Introducing the “prepotential”

F (XA) = −
√

2

3
CĨ J̃K̃

X ĨX J̃XK̃

X0
(4.9)

and the symplectic section5

(

XA

FA

)

≡
(

XA

∂AF

)

, (4.10)

one can define a Kähler potential

K(X(z), X̄(z̄)) := − ln[iX̄AFA − iXAF̄A] (4.11)

= − ln

[

i

√
2

3
CĨ J̃K̃(zĨ − z̄Ĩ)(zJ̃ − z̄J̃)(zK̃ − z̄K̃)

]

(4.12)

and a “period matrix”

NAB := F̄AB + 2i
Im(FAC)Im(FBD)XCXD

Im(FCD)XCXD
, (4.13)

where FAB ≡ ∂A∂BF etc. The particular (“very special”) form (4.9) of the prepotential

leads to

g
Ĩ

¯̃
J
≡ ∂Ĩ∂ ¯̃

J
K =

3

2
e−2σ ◦

a
Ĩ J̃ (4.14)

for the Kähler metric, g
Ĩ

¯̃
J
, on the scalar manifold M(4) of the four-dimensional theory, and

N00 = −2
√

2

9
√

3
CĨ J̃K̃AĨAJ̃AK̃ − i

3

(

eσ ◦
a

Ĩ J̃AĨAJ̃ +
1

2
e3σ

)

5One should perhaps emphasize that, fundamentally, the Lagrangian can be expressed in terms of a

symplectic section (XA, FA) without direct reference to a prepotential. In fact, a generic symplectic section

need not be such that FA = ∂AF for some function F . However, one can always go to a symplectic basis

where the new FA is, at least locally, the derivative of a prepotential F (see, e.g., [38]).
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N0Ĩ =

√
2

3
CĨ J̃K̃AJ̃AK̃ +

i√
3
eσ ◦

a
Ĩ J̃AJ̃

NĨ J̃ = −2
√

2√
3

CĨ J̃K̃AK̃ − ieσ ◦
a

Ĩ J̃ (4.15)

for the period matrix NAB. Defining

F 0
µν := −2

√
3Wµν , (4.16)

the dimensionally reduced Lagrangian (4.5) simplifies to

e−1L(4) = −1

2
R − g

Ĩ
¯̃
J
(∂µzĨ)(∂µz̄J̃ )

+
1

4
Im(NAB)FA

µνFµνB − e−1

8
Re(NAB)εµνρσFA

µνFB
ρσ . (4.17)

In terms of the selfdual and anti-selfdual field strengths,

FA±
µν ≡ 1

2

(

FA
µν ∓ i

2
eεµνρσFAρσ

)

FA±µν ≡ 1

2

(

FAµν ∓ i

2
e−1εµνρσFA

ρσ

)

, (4.18)

where

εµνρσ ≡ e−2ελκηθgµλgνκgρηgσθ , (4.19)

the last two terms of (4.17) can also be written as

e−1L(4)vec
kin =

1

2
Im(NABFA+

µν FµνB+)

≡ − i

4
(NABFA+

µν FµνB+ − N̄ABFA−
µν FµνB−). (4.20)

4.1.3 Symplectic reparametrization and global symmetries

The field strengths FA+
µν and their “duals”,

G+
µνA :=

δL(4)

δFA+
µν

= − ie

2
NABFµνB+, (4.21)

can be combined into a symplectic vector

(

FA+
µν

G+
µνB

)

(4.22)

so that the equations of motion that follow from (4.17) are invariant under the global

symplectic rotations

(

XA

FB

)

−→ O
(

XA

FB

)

,

(

FA+
µν

G+
µνB

)

−→ O
(

FA+
µν

G+
µνB

)

(4.23)

– 10 –



J
H
E
P
0
1
(
2
0
0
6
)
1
6
8

with O being a symplectic matrix with respect to the symplectic metric

ω =

(

0 δB
A

−δC
D 0

)

. (4.24)

namely OT ωO = ω. Writing O as

O =

(

A B

C D

)

, (4.25)

the period matrix N transforms as

N −→ (C + DN )(A + BN )−1. (4.26)

Symplectic transformations with B 6= 0 correspond to non-perturbative electromag-

netic duality transformations, whereas transformations with C 6= 0 involve shifts of the

theta angles in the Lagrangian.

General symplectic tranformations will take a Lagrangian L(F,G) with the field strengths

satisfying the Bianchi identities dFA = 0 and dGA = 0 to a Lagrangian L̃(F̃ , G̃) with the

new field strengths satisfying dF̃A = 0 and dG̃A = 0.

The subgroup, U , of Sp(2(ñ + 2), R) that leaves the functional invariant

L̃(F̃ , G̃) = L(F̃ , G̃),

is called the duality invariance group (or “U-duality group”). This is a symmetry group

of the equations of motion, and we will call theories related by transforations in U “on-

shell equivalent”. A subgroup of the duality invariance group that leaves the off-shell

Lagrangian invariant up to surface terms is called an “electric subgroup”, GE , since it

transforms electric field strengths into electric field strengths only. Obviously, we have the

inclusions

GE ⊂ U ⊂ Sp(2(ñ + 2), R).

Pure electric-magnetic exchanges are contained in the coset U/GE . Hodge-dualizations,

contained in Sp(2ñ+4)/U [39], lead to “dual theories” that generally have different manifest

electric subgroups GE .

A four-dimensional MESGT that derives from five dimensions with the prepoten-

tial (4.9) automatically has the following (global) duality symmetries:6

1. The whole global symmetry group of the 5D Lagrangian, i.e., the invariance group G

of the cubic polynomial V(h) = CĨ J̃K̃hĨhJ̃hK̃ , survives as a global symmetry group

of the 4D theory.

6There might be additional hidden symmetries for certain scalar manifolds, such as symmetric spaces [14],

or some homogeneous spaces [40]. However, in general, there are no additional hidden symmetries. The

number of hidden symmetry generators is maximum for symmetric target spaces in four dimensions and is

equal to the number of translation (shift) generators.
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2. The shifts zĨ → zĨ +bĨ with constant real parameters bĨ (i.e., the shifts of the Kaluza-

Klein scalars AĨ) become symmetries of the 4D theories if they are accompanied by

simultaneous transformations

F Ĩ
µν → F Ĩ

µν − 2WµνbĨ (4.27)

of the field strengths.

3. There is an additional global scaling symmetry

X0 → eβX0, X Ĩ → e−
β
3 X Ĩ (4.28)

which leaves the prepotential (4.9) invariant.

Together these symmetries form the global invariance group

(G × SO(1, 1)) n T (ñ+1), (4.29)

where SO(1, 1) describes the scaling symmetry, T (ñ+1) refers to the real translations of

scalars by bĨ , and n denotes a semi-direct product. The symplectic matrix O that im-

plements these symmetries on the symplectic sections (4.10), (4.22) is block diagonal for

G × SO(1, 1), but involves shifts of the theta angles for the translations T (ñ+1). More

precisely, an infinitesimal transformation of (G × SO(1, 1)) n T (ñ+1) is represented by

O = 1 +

(

B 0

C −BT

)

(4.30)

with

BA
B =

(

β 0

bĨ [M Ĩ
(r)J̃

+ 1
3βδĨ

J̃
]

)

, CAB =

(

0 0

0 −2
√

2CĨ J̃K̃bK̃

)

, (4.31)

where bĨ is now an infinitesimal shift parameter and only terms linear in the transformation

parameters are kept. Note that for different symplectic sections, the above transformation

matrices also change their form in general. In order to gauge symmetries in the standard

way [10, 11], one works in a symplectic basis, where the symmetries one wants to gauge are

represented by block-diagonal symplectic matrices. However, there are cases in which also

off-diagonal transformations can be gauged by certain “non-standard” gaugings [11, 41],

but often these gaugings turn out to be dual to a standard gauging. We will come back to

this point later.

4.2 The dimensional reduction of N = 2 YMESGTs with tensor fields

In this subsection, we consider the dimensional reduction of a 5D YMESGT with tensor

fields to 4D. Our starting point is thus the 5D Lagrangian (3.9). Just as for the ungauged

case, we decompose the fünfbein as in eq. (4.1) and the vector fields ÂI
µ̂ as in (4.3) (re-

membering that we now no longer have 5D vector fields with an index M , as these are
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converted to 5D tensor fields). The 5D tensor fields B̂M
µ̂ν̂ are decomposed into Kaluza-Klein

invariant 4D tensor fields, BM
µν , and 4D vector fields, BM

µ :

B̂M
µ̂ν̂ =

(

B̂M
µν

B̂M
µ5

)

=

(

BM
µν − 4W[µBM

ν]

BM
µ

)

. (4.32)

As is outlined in appendix A, this results in the 4D Lagrangian

e−1L(4) = −1

2
R − 3

4

◦
a

Ĩ J̃(Dµh̃Ĩ)(Dµh̃J̃) − 1

2
e−2σ ◦

aIJ(DµAI)(DµAJ )

−e−2σ ◦
aIM(DµAI)BµM − 1

2
e−2σ ◦

aMNBM
µ BµN

+
e−1

g
εµνρσΩMNBM

µν(∂ρB
N
σ + gAI

ρΛ
N
IP BP

σ )

+
e−1

g
εµνρσΩMNWµνB

M
ρ BN

σ +
e−1

2
√

6
CMNIε

µνρσBM
µνB

N
ρσAI

−1

4
eσ ◦

aMNBM
µνBNµν − 1

2
eσ ◦

aIM(FI
µν + 2WµνAI)BMµν

−1

4
eσ ◦

aIJ(FI
µν + 2WµνAI)(FJµν + 2W µνAJ) − 1

2
e3σWµνW

µν

+
e−1

2
√

6
CIJKεµνρσ

{

FI
µνFJ

ρσAK + 2FI
µνWρσAJAK +

4

3
WµνWρσAIAJAK

}

−g2P, (4.33)

where

DµAI ≡ ∂µAI + gAJ
µf I

JKAK (4.34)

FI
µν ≡ 2∂[µAI

ν] + gf I
JKAJ

µAK
ν (4.35)

Dµh̃Ĩ ≡ ∂µh̃Ĩ + gAI
µM Ĩ

IK̃
h̃K̃ , (4.36)

and the total scalar potential, P , is given by

P = e−σP (T ) +
3

4
e−3σ ◦

a
Ĩ J̃(AIM Ĩ

IK̃
hK̃)(AJM J̃

JL̃
hL̃), (4.37)

Note that, in the first line of (4.33), we have absorbed the kinetic term of sigma by defining

h̃Ĩ as in (4.7).

This Lagrangian has several interesting features:

• Whereas the scalars hĨ are complete, the scalars AM one had in the ungauged theory,

have disappeared from the Lagrangian. This was to be expected, as the scalars AM

in the ungauged theory have their origin in the 5D vector fields ÂM
µ̂ , which, however,

are dualized to the 5D two-form fields B̂M
µ̂ν̂ in the gauged version, and the B̂M

µ̂ν̂ do not

give rise to 4D scalar fields.

• The terms in the second line of (4.33) suggest that the scalar AM has been eaten by

the vector fields BM
µ as the result of a Peccei-Quinn-type gauging of the translations
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AM → AM + bM (cf. section 4.1.3). In the standard symplectic basis, however, the

shifts of the AĨ are not blockdiagonal symplectic transformations (see eq. (4.31)).

The conventional gauging of isometries of the scalar manifold described in [10, 11]

requires a blockdiagonal embedding of the isometries in the corresponding symplectic

duality matrices. The theory at hand can therefore be interpreted in either of two

ways: either as a non-standard gauging in the “conventional” symplectic basis, or as

a standard gauging in a rotated symplectic section. We will map the above theory

to such a standard gauging below.

• “Regurgitating” scalar fields AM from the BM
µ , or, more precisely, making the re-

placement

BM
µ → gBM

µ + DµAM (4.38)

together with the shift

BM
µν → gBM

µν + FM
µν + 2WµνAM , (4.39)

and switching off g, leads back to the ungauged theory (4.5).

• After having eaten the scalar fields AM , the vector fields BM
µ acquire a mass term

(the last term in the second line of (4.33)). However, there is no explicit kinetic term

for the BM
µ . Instead, there are the two-form fields BM

µν , which also have a mass term

(in line 5 of (4.33)), but also no second order kinetic term. The two-forms have a

one derivative interaction with the vectors BM
µ in the third line of (4.33). Such a

term normally allows the elimination of the tensor fields in favor of the vector fields

or vice versa, so that one either obtains massive vector fields with a standard second

order kinetic term or massive tensor fields with a standard second order kinetic term.

This is possible because massive vectors are dual to massive tensors in 4D. As we will

show below, it is indeed possible to eliminate the tensors BM
µν in favor of the vectors

BM
µ . However, the converse seems to be difficult, if not impossible to achieve locally,

due to the term proportional to εµνρσWµνBM
ρ BN

σ in the fourth line in (4.33).

• The tensors BM
µν and the vectors BM

µ are charged under the 5D gauge group, K, which

also descends to a local gauge symmetry in 4D. This is in contrast to the massive

tensor fields that have been recently considered in the literature [2 – 4]. The tensor

fields in those papers arise from dualizations of scalars of the quaternionic manifold

instead of the special Kähler manifold and also don’t carry any charge with respect

to a non-trivial local gauge group. The Lagrangian (4.33) does, however, have some

resemblance with the Freedman-Townsend model [30] (see also [12]).

• The terms in the sixth and seventh line of (4.33) can be written as

1

2
Im

[

N00F
0+
µν Fµν0+ + 2N0IF

0+
µν FµνI+ + NIJFI+

µν FµνI+
]∣

∣

∣

AM=0
. (4.40)
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5. Eliminating the tensor fields

The action (4.33) contains the terms

−1

4
eσ ◦

aMNBM
µνBNµν − 1

2
e−2σ ◦

aMNBM
µ BµN +

e−1

g
εµνρσΩMNBM

µν∂ρB
N
σ (5.1)

If these were the only terms involving BM
µν and BN

µ , one could simply, as mentioned in the

previous section, integrate out BM
µν in favor of BN

µ , which, schematically, would result in a

relation of the form

BµνM = T M
Ne−1εµνρσ∂ρB

N
σ (5.2)

with some matrix T M
N and leads to a standard second order action for massive vector

fields BN
µ ,

−KMN (∂[µBM
ν] )(∂[µBν]N) −MMNBM

µ BµN , (5.3)

with a kinetic and a mass matrix KMN and MMN , respectively.

Alternatively, one could also choose to integrate out the vector fields in favor of the

tensor fields, which then would lead to a relation of the form

BµM = T̃ M
Ne−1εµνρσ∂νBN

ρσ (5.4)

and a standard second order action for massive tensor fields,

−K̃MN (∂[µBM
νρ])(∂

[µBνρ]N) − M̃MNBM
µνB

µνN . (5.5)

However, this is not quite what happens, as in the actual Lagrangian (4.33), there are also

other quadratic terms of the form

e−1

g
ΩMNεµνρσWµνB

M
ρ BN

σ (5.6)

and
e−1

2
√

6
CMNIε

µνρσBM
µνB

N
ρσAI . (5.7)

The first of these two terms would contribute a term proportional to

e−1εµνρσWνρB
M
σ (5.8)

to the left hand side of eq. (5.4). This additional term seems to make it impossible to

(locally) eliminate the vector fields BN
µ in favor of the tensor fields BM

µν , as the field strength

Wµν would somehow have to be “inverted” to solve the equation for BN
µ . The second

term, (5.7), on the other hand, would yield a contribution involving

e−1CMNIA
IεµνρσBN

ρσ (5.9)

to the left hand side of (5.2). This involves only scalar fields in front of BM
µν , which, in

principle, can be inverted so as to solve the modified eq. (5.2) for BM
µν . Due to the epsilon
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tensor, however, one has to switch to the selfdual and anti-selfdual components of all two-

forms. In addition, there are also further terms linear in the BM
µν in eq. (4.33), which we

have neglected in the above schematic discussion. Let us therefore become more specific

now and carry out the elimination of the tensor fields in detail. To this end, we write the

BM
µν -dependent terms in (4.33) as follows

e−1L(4)

BM
µν

=
1

2
Im

[

NMNBM+
µν BµνN+

]∣

∣

∣

AM=0
+ 2Re

[

J+µν
M BM+

µν

]

, (5.10)

where we have introduced

Jµν
M := −1

2
eσ ◦

aIM(FµνI + 2W µνAI) +
e−1

g
εµνρσΩMNDρB

N
σ (5.11)

and used

NMN

∣

∣

AM=0
= − 4√

6
CMNIA

I − ieσ ◦
aMN . (5.12)

Varying (5.10) with respect to BM
µν , one obtains

Jµν+
M =

i

2
NMN

∣

∣

AM =0
BµνN+, (5.13)

which can be used to express BM+
µν in terms of J+

µνM in (5.10) with the result

e−1L(4)

BM
µν

= 2Im
[

NMNJ+
µνMJµν+

N

]∣

∣

∣

AM=0
. (5.14)

Here, NMN denotes the inverse of NMN ,

NMNNNP = δP
M . (5.15)

The Lagrangian (4.33) now takes on a more concise form:

e−1L(4) = −1

2
R − 3

4

◦
a

ĨJ̃(Dµh̃Ĩ)(Dµh̃J̃) − 1

2
e−2σ ◦

aIJ(DµAI)(DµAJ)

−e−2σ ◦
aIM (DµAI)BµM − 1

2
e−2σ ◦

aMNBM
µ BµN

+
1

2
Im

[

N00F
0+
µν Fµν0+ + 2N0IF

0+
µν FµνI+ + NIJFI+

µν FµνJ+
]∣

∣

∣

AM=0

+2Im
[

NMNJ+
µνMJµν+

N

]∣

∣

∣

AM=0
+

e−1

g
εµνρσΩMNWµνBM

ρ BN
σ

−g2P. (5.16)

6. The equivalence to a standard gauging

In this section, we show that the above action (5.16) is dual to a standard gauged su-

pergravity theory of the type described in [10, 11]. We already identified the translations

AM → bM and the 5D gauge group K generated by the matrices M Ĩ
(I)J̃

of eq. (3.4) as part

of the 4D gauge group. We also saw, in (4.31), however, that, in the ungauged theory,
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the translations AĨ → bĨ are not represented by block diagonal symplectic matrices if one

works in the “natural” symplectic basis

(

XA

FB

)

=

(

XA

∂BF

)

(6.1)

with X0 = 1 and X Ĩ = zĨ and
(

FA
µν

GµνB

)

, (6.2)

with F 0
µν = −2

√
3Wµν , which one directly gets from the dimensional reduction from 5D.

In order to gauge the translations associated with bM in the standard way, one therefore

has to go to a different symplectic basis in which both the translations by bM and the K

transformations are represented by block diagonal symplectic matrices. To see how this

works, we split the zĨ into (zI , zM ) and take into account that CMNP = CIJM = 0. The

symplectic vector (6.1) then becomes



















X0

XI

XM

F0

FI

FM



















=



















1

zI

zM

√
2/3[CIJKzIzJzK + 3CIMNzIzMzN ]

−
√

2[CIJKzJzK + CIMNzMzN ]

−2
√

2CMNIz
NzI



















(6.3)

Under an infinitesimal translation zM → zM + bM , this transforms as



















X0

XI

XM

F0

FI

FM



















→



















X0

XI

XM

F0

FI

FM



















+



















0

0

bMX0

−bMFM

−2
√

2bMCMNIX
N

−2
√

2bNCMINXI



















, (6.4)

where we have, somewhat redundantly, inserted X0 = 1 in the third line and kept only

terms linear in the infinitesimal parameters bM .

From this expression, it becomes clear that (X0, FI ,X
M ) transform among themselves,

as do (F0,X
I , FM ). Thus, a symplectic duality rotation that exchanges X0 with F0 and

XM with FM , could make the translations zM → zM + bM blockdiagonal. At the same

time, we want this symplectic duality rotation to preserve the block diagonality of the

K transformations (3.4). In our original basis (6.3), a combined infinitesimal translation

zM → zM + bM and infinitesimal K transformation with parameter αI is generated by the

symplectic matrix

O = 1 +

(

B 0

C −BT

)

, (6.5)
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with

B =







0 0 0

0 αIfK
IJ 0

bM 0 αIΛM
IN






, C =







0 0 0

0 0 BIM

0 BMI 0






, (6.6)

where

BIM := −2
√

2CIMNbN . (6.7)

In order to get this block diagonal, we switch to a new symplectic basis

(

XA

FB

)

→
(

X̌A

F̌B

)

≡ S
(

XA

FB

)

,

(

FA
µν

GµνB

)

→
(

F̌A
µν

ǦµνB

)

≡ S
(

FA
µν

GµνB

)

(6.8)

where

S =



















0 0 0 1 0 0

0 δJ
I 0 0 0 0

0 0 0 0 0 DMN

−1 0 0 0 0 0

0 0 0 0 δI
J 0

0 0 DMN 0 0 0



















, (6.9)

and

DMN := −2
√

3ΩMN , DMNDNP = δP
M . (6.10)

It is easy to verify that the rotation matrix S is itself symplectic and that

Ǒ ≡ SOS−1 = 1 +

(

B̌ 0

0 −B̌T

)

(6.11)

with

B̌ =







0 0 2
√

3bMΩMN

0 αIfK
IJ 0

0 +ΛN
IMbM αIΛN

IM






. (6.12)

Here, we have used (3.2), (3.3) and (6.10). Hence, in the new basis (X̌A, F̌B),

(F̌A
µν , ǦµνB), the group K n R

nT is represented by block diagonal symplectic matrices

Ǒ. But this is not all; setting

B̌C
B = αAfC

AB, (6.13)

one reads off

fK
IJ , fN

IM = ΛN
IM = −fN

MI , f0
MN = −2

√
3ΩMN , (6.14)

as the non-vanishing components as well as αM = −bM . It is easy to see that the non-

vanishing fC
AB of eq. (6.14) define the Lie algebra of a central extension of the Lie algebra

of K n R
nT , with the central charge corresponding to the index 0.7 We shall denote the

7Note that there is a subtlety here concerning the central charge. As one easily verifies, two translations

represented by matrices of the form (6.11) and (6.12) with αI = 0 and two parameters bM and bM′

, always

commute, even though f0

MN 6= 0. However that is a generic property of finite-dimensional representations

of centrally extended Lie algebras such as the Heisenberg algebra.
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corresponding group of this centrally extended Lie algebra as K n HnT +1, where HnT +1

denotes the Heisenberg group generated by the translations and the central charge.

As the structure constants define the adjoint representation, this centrally extended

group can therefore be gauged in the standard way if one uses the new symplectic basis

(X̌A, F̌B). As we will show now, the resulting Lagrangian of this K nHnT +1 gauged theory

is dual to the Lagrangian (5.16) of the previous section, which we got from the dimensional

reduction of a 5D theory with tensor fields. In order to show this, we will start from

the 4D ungauged theory in the new symplectic basis (X̌A, F̌B), (F̌A
µν , ǦµνB) and assume

the subsequent gauging of the group K n HnT +1 using the standard formulae [10, 11]

evaluated in that new basis. As this gauging is fairly standard, we can skip the details and

immediately write down the resulting Lagrangian. This standard Lagrangian with gauge

group K n HnT +1 will then be subjected to a few field redefinitions and dualizations until

it precisely coincides with the Lagrangian (5.16) from the dimensional reduction of a 5D

theory with tensor fields.

We will first carry out this program for the scalar sector and after that for the kinetic

terms of the vector fields.

6.1 The scalar sector

The Kähler potential K(z, z̄) of eq. (4.11) is a symplectic invariant. Thus, the metric g
Ĩ

¯̃
J

stays the same as in the old symplectic basis. The gauging of K n HnT +1 , however, leads

to two modifications in the scalar sector. First, the kinetic term of the scalars becomes

covariant with respect to the gauge group:

−g
Ĩ

¯̃
J
(∂µzĨ)(∂µz̄J̃ ) → −g

Ĩ
¯̃
J
(DµzĨ)(Dµz̄J̃ ) (6.15)

with

DµzĨ = ∂µzĨ + gǍA
µ K Ĩ

A. (6.16)

Here, K Ĩ
A(z) are the holomorphic Killing vectors that generate the gauge group on the scalar

manifold M(4). They can be expressed in terms of derivatives of Killing prepotentials, PA,

K Ĩ
A = igĨ

¯̃
J∂ ¯̃

J
PA, (6.17)

where [10, 11]

PA = eK(F̌BfB
AC

¯̌XC + ¯̌FBfB
ACX̌C). (6.18)

Using this, one obtains

P0 = 0

PI = −
√

2eK
(

CĨ J̃K̃zJ̃zK̃M Ĩ
(I)L̃

z̄L̃
)

+ c.c.

PM = −2
√

2eKCIMP

(

zP z̄I − z̄P z̄I
)

+ c.c. (6.19)

and then

K J̃
0 = 0
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K J̃
I = M J̃

(I)L̃
zL̃

K Ĩ
M = −δĨ

M . (6.20)

Upon the identification

AI
µ = ǍI

µ

BM
µ = −g

√
3ǍM

µ , (6.21)

the kinetic term of the scalars then becomes

−g
Ĩ

¯̃
J
(DµzĨ)(Dµz̄J̃) = −3

4

◦
a

ĨJ̃(Dµh̃Ĩ)(Dµh̃J̃) − 1

2
e−2σ ◦

a
Ĩ J̃(D′

µAĨ)(D′µAJ̃) (6.22)

with

Dµh̃Ĩ = ∂µh̃Ĩ + gAI
µM Ĩ

(I)K̃
h̃K̃

D′
µAĨ = ∂µAĨ + gAI

µM Ĩ
(I)K̃

AK̃ + BM
µ δĨ

M . (6.23)

The vector fields BM
µ can now absorb the scalars AM , as anticipated, and, after also adding

the gravitational term, we have reproduced the first two lines of (5.16).8

The gauging also induces a second contribution to the scalar sector, namely a scalar

potential. Using the standard expressions, this scalar potential should be

V = eK(X̌AK̄ Ĩ
A)g ¯̃

IJ̃
( ¯̌XBK J̃

B). (6.24)

Using (6.20) and expressing the X̌ Ĩ in terms of the zĨ , one finds that V = P , where P is

the potential (4.37) of the dimensionally reduced Lagrangian (5.16). Thus, the two scalar

sectors completely agree. It remains to verify the agreement for the kinetic terms of the

vector fields.

6.2 The kinetic terms of the vector fields

We shall now compare kinetic terms of the vector fields of (5.16) with those of the KnHnT +1

gauged theory. By kinetic terms of the vector fields, we mean the terms in the third and

fourth line of (5.16), which, using (4.16), (6.21) and (6.14), can be rewritten as

e−1L(4)kin
vec =

1

2
Im

[

N00F
0+
µν Fµν0+ + 2N0IF

0+
µν F̌µνI+ + NIJ F̌I+

µν F̌µνI+
]∣

∣

∣

AM=0

+2Im
[

NMNJ+
µνMJµν+

N

]∣

∣

∣

AM=0
− Im

[

F 0+
µν Zµν+

]

, (6.25)

8We should perhaps emphasize that here we are discussing the gauging of the real translational isometries

(of Re(zM)). The resulting massive BPS vector supermultiplets have scalars given by Im(zM). This is to

be contrasted with the dimensional reduction of 5D YMESGTs with noncompact gauge groups, in which

the 4D vector fields associated with noncompact symmetries belong to massive BPS supermultiplets whose

scalar fields are Re(zM ). This is best seen by the fact that in five dimensions the non-compact gauge fields

become massive by eating the scalars which in four dimensions correspond to the imaginary part of zM .
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with

Zµν := gf0
MN ǍM

µ ǍN
ν = − 2√

3g
ΩMNBM

µ BN
ν (6.26)

Jµν
M ≡ −1

2
eσ ◦

aIM

(

F̌µνI − 1√
3
Fµν0AI

)

−
√

3e−1εµνρσΩMNDρǍ
N
σ . (6.27)

Using (cf. eq. (4.15))

NIM

∣

∣

AM=0
= −ieσ ◦

aIM (6.28)

N0M

∣

∣

AM=0
=

i√
3
eσ ◦

aIMAI (6.29)

as well as

D[µǍM
ν] =

1

2
F̌M

µν , (6.30)

and the shorthand notation (cf. eq. (6.10)),

DMN ≡ −2
√

3ΩMN , (6.31)

Jµν
M can be rewritten as

Jµν
M = − i

2

(

NIM F̌µνI + NI0F
µν0

)∣

∣

∣

AM =0
+

e−1

4
εµνρσΩMN F̌N

ρσ. (6.32)

Inserting this in (6.25) and regrouping some terms, one obtains

e−1L(4)kin
vec =

1

2
Im

[(

N00−N0MNMNNN0

)

F 0+
µν Fµν0++ 2

(

N0I−NIMNMNNN0

)

F̌I+
µν Fµν0+

+
(

NIJ −NIMNMNNNJ

)

F̌I+
µν F̌µνJ+ − 2

(

DPMNMNNN0

)

F̌P+
µν F 0+

µν

+2
(

NIMNMNDNP

)

F̌I+
µν F̌µνP+ +

(

DPMNMNDNQ

)

F̌P+
µν F̌µνQ+

−2F 0+
µν Zµν+

]∣

∣

∣

AM=0
(6.33)

Eq. (6.33) is now our final form of the dimensionally reduced theory with tensor fields.

We will now show that it is “dual” (modulo some field redefinitions) to a standard 4D

gauged supergravity theory with the gauge group K n HnT +1. Gauging this group in the

standard way requires working in the symplectic basis (X̌A, F̌B) and (F̌A
µν , ǦµνB), as we

discussed at length at the beginning of section 6. As we have seen in section 6.1, the

scalars AM can be “eaten” by the vector fields ǍM
µ that gauge the translations of HnT +1.

Assuming these scalars to be gauged away from now on, the kinetic term of the K nHnT +1

gauged theory is given by

e−1Ľ(4)vec
kin =

1

2
Im

[

ŇABF̌A+
µν F̌µνB+

]∣

∣

∣

AM=0

=
1

2
Im

[

Ň00F̌0+
µν F̌µν0+ + 2Ň0IF̌I+

µν F̌µν0+

+ŇIJF̌I+
µν F̌µνJ+ + 2ŇM0F̌M+

µν F̌0+
µν
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+2ŇIM F̌I+
µν F̌µνM+ + ŇMN F̌M+

µν F̌µνN+
]∣

∣

∣

AM=0
, (6.34)

where ŇAB is the period matrix in the basis (X̌A, F̌B) (to be worked out below), and

F̌C
µν = 2∂[µǍC

ν] + gfC
ABǍA

µ ǍB
ν . (6.35)

with the structure constants of eqs. (6.14). Note that, due to fB
0A = 0, the vector field Ǎ0

µ

only appears via its curl in F̌0
µν :

F̌0
µν = 2∂[µǍ0

ν] + gf0
MN ǍM

µ ǍN
ν . (6.36)

Obviously, (6.33) and (6.34) are not yet of the same form. In fact, there are two

important differences:

1. Eq. (6.33) is expressed in terms of the period matrix NAB that corresponds to the

symplectic basis (XA, FB). Eq. (6.34), on the other hand, is expressed in terms of

the period matrix ŇAB that corresponds to the symplectic section (X̌A, F̌B).

2. Both (6.33) and (6.34) are already expressed in terms of ǍI
µ and ǍM

µ . However, (6.33)

is still expressed in terms of A0
µ, whereas (6.34) already contains the dual vector

field Ǎ0
µ. Furthermore, (6.33) contains a curious term proportional to (the last term

in (6.33))
e−1g

4
εµνρσF 0

µνǍM
ρ ǍN

σ . (6.37)

Such terms have been analyzed in the literature before [11, 41] (see also the more

recent paper [42]). In our case, this term corresponds to some of the standard gauged

supergravity terms in (6.34) upon the dualization of F̌ 0
µν ↔ F 0

µν , as we will show in

a moment.

We will now show the equivalence of (6.33) and (6.34) by transforming (6.34) into (6.33).

As we have already mentioned, Ǎ0
µ appears in (6.34) only via its (Abelian) curl F̌ 0

µν as it

gauges the central charge. In (6.34), Ǎ0
µ can therefore be dualized to another vector field

Cµ with Abelian field strength Cµν . As usual, this is done by adding

−e−1

4
εµνρσF̌ 0

µνCρσ = Im[F̌ 0+
µν Cµν+] (6.38)

to the Lagrangian (6.34). Varying with respect to C+
µν and reinserting the resulting equation

for F̌ 0+
µν gives

e−1Ľvec
kin, dual =

1

2
Im

[

− 2C+
µνZµν+ +

(

ŇĨJ̃ − Ň0ĨŇ0J̃

Ň00

)

F̌ Ĩ+
µν F̌µνJ̃+

−2
Ň0Ĩ

Ň00

F̌ Ĩ+
µν Cµν+ − 1

Ň00

C+
µνC

µν+
]∣

∣

∣

AM=0
. (6.39)

In order to bring this to the form (6.33), it remains to reexpress the ŇAB in terms of

the NAB that appear in (6.33). To this end, recall that the basis (X̌A, F̌B) is essentially
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obtained from the basis (XA, FB) by exchange of X0 with F0 and XM with FM (in fact

with DMNFN ). This exchange is implemented by the symplectic transformation matrix S
of eq. (6.9):

(

X̌A

F̌B

)

= S
(

XA

FB

)

. (6.40)

It is convenient to decompose this transformation into two steps. In the first step, XM

and DMNFN are exchanged by multiplication with the symplectic matrix

S1 =



















1 0 0 0 0 0

0 δJ
I 0 0 0 0

0 0 0 0 0 DMN

0 0 0 1 0 0

0 0 0 0 δJ
I 0

0 0 DMN 0 0 0



















. (6.41)

We call the resulting symplectic vector (X̃A, F̃B), i.e.

(

X̃A

F̃B

)

= S1

(

XA

FB

)

. (6.42)

In a second step, X0 and F0 (which are now called X̃0 and F̃0) are rotated by subsequent

multiplication with the symplectic matrix

S2 =



















0 0 0 1 0 0

0 δJ
I 0 0 0 0

0 0 δN
M 0 0 0

−1 0 0 0 0 0

0 0 0 0 δJ
I 0

0 0 0 0 0 δN
M



















. (6.43)

Obviously,

S = S2S1 (6.44)

and
(

X̌A

F̌B

)

= S2

(

X̃A

F̃B

)

. (6.45)

The period matrix is likewise computed in a two step process. First, following eq. (4.26),

we determine

Ñ = (C1 + D1N )(A1 + B1N )−1 (6.46)

where

S1 =

(

A1 B1

C1 D1

)

. (6.47)
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The result is

ÑAB =







N00 −N0MNMNNN0 N0I −N0MNMNNNI N0MNMNDNP

NI0 −NIMNMNNN0 NIJ −NIMNMNNNJ NIMNMNDNP

−DMNNNPNP0 −DMNNNPNPI CMNNNP DPR






(6.48)

ŇAB can then be obtained from

Ň = (C2 + D2Ñ )(A2 + B2Ñ )−1, (6.49)

where

S2 =

(

A2 B2

C2 D2

)

. (6.50)

The result is

ŇAB =
1

Ñ00

(

−1 Ñ0Ĩ

ÑĨ0 (Ñ00ÑĨJ̃ − Ñ0ĨÑ0J̃)

)

. (6.51)

We are now ready to show the equivalence of (6.33) and (6.39). First, using (6.51), one

rewrites (6.39) as

e−1Ľvec
kin, dual =

1

2
Im

[

− 2C+
µνZµν+ + ÑĨJ̃ F̌ Ĩ+

µν F̌µνJ̃+

+2Ñ0ĨF̌ Ĩ+
µν Cµν+ + Ñ00C

+
µνC

µν+
]∣

∣

∣

AM=0
. (6.52)

Using (6.48), and identifying

F 0
µν = Cµν , (6.53)

this becomes eq. (6.33).

What we have thus shown, is that after the tensor fields are eliminated, the theory

is dual to a standard gauged supergravity theory with gauge group K n HnT +1. In order

to gauge this group in the standard way, its action has to be made block diagonal on

the symplectic section prior to the gauging. This is done by going to a new symplectic

basis (X̌A, F̌B), which is obtained from the “natural” basis (XA, FB) by exchanging X0

with F0 and XM with DMNFN by means of a symplectic rotation. The same rotations

have to be applied to the corresponding field strengths (F 0
µν , Gµν0) and (FM

µν , GµνN ), where

they correspond to electromagnetic duality transformations. After this transformation,

the gauging can be carried out in the standard way. In order to recover the compactified

theory with the tensor fields eliminated, one finally has to re-dualize F̌ 0
µν after the gauging.

This dualization essentially takes back the exchange of X0 with F0 (and the corresponding

exchange of F 0
µν and Gµν0), but leaves some unusual new couplings of the form (6.37).

The vector fields BM
µ that descend from the 5D tensor fields are interpreted as massive

vector fields that gained their mass from eating the scalars AM , which disappeared from

the action. The BM
µ are essentially the magnetic duals of the AM

µ of the ungauged theory.

This makes sense, as the 5D tensors B̂M
µ̂ν̂ from which the BM

µ descend, are also the duals

of the 5D vector fields ÂM
µ̂ , from which the AM

µ descend.
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6.3 The case of not completely reducible representations

In this subsection, we briefly comment on the dimensionally reduced theory corresponding

to case (ii) of section 3, where the decomposition of the (ñ+1)-dimensional representation

of G with respect to the the prospective 5D gauge group K is reducible, but not completely

reducible. This case has been studied in ref. [29]. In that case, the vector fields ÂI
µ̂ still

transform in the adjoint representation of K ⊂ G and have the standard field strengths

F̂I
µ̂ν̂ ≡ 2∂[µ̂ÂI

ν̂] + gf I
JKÂJ

µ̂ÂK
ν̂ . In addition to the transformation matrix ΛN

IM that acts only

on the tensor fields B̂M
µ̂ν̂ , however, there is now also a transformation matrix of the type9

ΛM
IJ that can mix the tensor fields with the field strengths of the vector fields, so that the

representation of K is no longer block diagonal, i.e. completely reducible.

This new matrix is related to a new allowed set of components of the CĨJ̃K̃ tensor,

namely the components of the form CIJM (which have to vanish in the completely reducible

case (i) of section 3):

CIJM = −
√

6ΛN
(IJ)ΩNM . (6.54)

The modifications that are necessary to perform such a gauging in a supersymmetric

way are the same as in the completely reducible case, except for the following differences:

• The covariant derivative (3.6) of the tensor fields, D̂[µ̂B̂M
ν̂ρ̂], in the B̂N ∧ D̂B̂M term

of the five-dimensional Lagrangian (3.9) gets an additional contribution due to the

mixing matrix ΛM
IJ :

D̂[µ̂B̂M
ν̂ρ̂] → ∂[µ̂B̂M

ν̂ρ̂] + 2gΛM
IJ ÂI

[µ̂F̂J
ν̂ρ̂] + gÂI

[µ̂ΛM
IN B̂N

ν̂ρ̂]. (6.55)

• There are new Chern-Simons terms of the type AAAF and AAAAA beyond the

already existing ones that are already displayed in (3.9) for the completely reducible

case:

Ladditional
C.-S. = −1

2
εµ̂ν̂λ̂ρ̂σ̂ΩMNΛM

IKΛN
FGÂI

µ̂ÂF
ν̂ ÂG

λ̂

(

−1

2
gF̂K

ρ̂σ̂ +
1

10
g2fK

HLÂH
ρ̂ ÂL

σ̂

)

.

(6.56)

• The new couplings enter the Killing vectors (and hence the covariant derivatives of

the scalars) and the scalar potential via an implicit dependence on ΛM
IJ .

These modifications all have their counterparts in the dimensionally reduced theory

in four dimensions, and it is straightforward to determine them from an obvious gener-

alization of the equations displayed in the appendix. One important aspect of the 4D

theory, however, can best be seen from the way the non-vanishing CIJM terms influence

the transformation laws of the symplectic section under the translation of the Kaluza-Klein

scalars AM by bM . Indeed, the FA components of the symplectic section now have addi-

tional contributions from the new CIJM terms in the prepotential F , so we now have under

9These matrices are called tIJ
M in [29].
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infinitesimal translation zM → zM + bM ,



















X0

XI

XM

F0

FI

FM



















→



















X0

XI

XM

F0

FI

FM



















+



















0

0

bMX0

−bMFM

−2
√

2bMCMNIX
N − 2

√
2bMCIJMXJ

−2
√

2bMCMINXI



















. (6.57)

We observe that, just as for the completely reducible case, the components (F0,X
I , FM )

still transform among themselves. However, this is no longer true for the components

(X0, FI ,X
M ) if CIJM 6= 0 — a clear difference to the completely reducible case with

CIJM = 0. In fact, the minimal set of components that contains the FI and closes under

translations is in general (X0, FI ,X
M ,XI), which is too big for one half of a symplectic

section. One might wonder whether perhaps some linear combination of the XM and

XI could be used instead of all the XM and XI in this set, so as to make the number

of independent components smaller, but this would require a symplectic rotation that

somehow trades the FM with that linear combination of the XM and XI , just as we traded

FM and XM using the matrix S1 in the completely reducible case. However, whereas S1

contained only Kronecker deltas and the matrix DMN ∼ ΩMN , i.e. a natural object of the

5D theory, there is no natural object with the index structure {·}I
M that one can build from

the 5D objects ΩMN , fK
IJ ,ΛN

IM ,ΛM
IJ , CIJK , which determine the whole theory. Thus, due

to the presence of CIJM terms, it seems in general not possible to find a symplectic matrix

S that brings the gauge transformations to block diagonal form. As a result, these theories

in 4D should, apart from some possible special cases, involve topological terms of the form

studied in [11, 41] in addition to the standard Yang-Mills gauging, even after dualizations

of the type discussed in the previous subsections are performed.

7. CSO∗(2N) gauged supergravity theories from reduction of 5D theories

and unified YMESGTs in four dimensions

Unified 5D MESGTs are defined as those theories whose Lagrangian admit a simple sym-

metry group under which all the vector fields, including the “graviphoton”, transform

irreducibly. Among those 5D MESGTs whose scalar manifolds are homogeneous spaces

only four are unified [43]. They are defined by the four simple Euclidean Jordan alge-

bras of degree three, JA
3 , of (3 × 3) Hermitian matrices over the four division algebras

A = R, C, H, O [14], and their scalar manifolds are actually symmetric spaces, which we

list below:

M = SL(3, R)/SO(3) (ñ = 5)

M = SL(3, C)/SU(3) (ñ = 8)

M = SU∗(6)/USp(6) (ñ = 14)

M = E6(−26)/F4 (ñ = 26), (7.1)
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where we have indicated the number of vector multiplets, ñ, for each of these theories.

In these cases, the symmetry groups G of these theories are simply the isometry groups

SL(3, R), SL(3, C), SU∗(6) and E6(−26), respectively, under which the, respectively, 6, 9, 15

and 27 vector fields AĨ
µ transform irreducibly [14]. Thus, according to our definition, all of

these four theories are unified MESGTs. These supergravity theories are referred to as the

magical supergravity theories [44] , because of their deep connection with the Magic Square

of Freudenthal, Rozenfeld and Tits [45]. Of these four unified MESGTs in five dimensions

only the theory defined by JH
3 can be gauged so as to obtain a unified YMESGT10 with

the gauge group SO∗(6) ' SU(3, 1).

As was shown in [43], if one relaxes the requirement that the scalar manifolds be

homogeneous spaces, one finds three infinite families of unified MESGTs in five dimensions.

They are defined by Lorentzian Jordan algebras of arbitrary degree over the four associative

division algebras R, C, H. These Lorentzian Jordan algebras JA

(1,N) of degree p = N + 1

are realized by (N + 1)× (N + 1) matrices over A which are hermitian with respect to the

Lorentzian metric η = (−,+,+, . . . ,+):

(ηX)† = ηX ∀X ∈ JA

(1,N) . (7.2)

A general element, U , of JA

(1,N) can be written in the form

U =

(

x −Y †

Y Z

)

, (7.3)

where Z is an element of the Euclidean subalgebra JA
N (i.e., it is a Hermitian (N × N)-

matrix over A), x ∈ R, and Y denotes an N -dimensional column vector over A. Under

their (non-compact) automorphism group, Aut(JA

(1,N)), these simple Jordan algebras JA

(1,N)

decompose into an irreducible representation formed by the traceless elements plus a singlet,

which is given by the identity element of JA

(1,N) (i.e., by the unit matrix 1):

JA

(1,N) = 1 ⊕ {traceless elements} ≡ 1 ⊕ JA

(1,N)0
. (7.4)

By identifying the structure constants (d-symbols) of the traceless elements of a Lorentzian

Jordan algebra JA

(1,N) with the CĨ J̃K̃ of a MESGT: CĨ J̃K̃ = dĨ J̃K̃ , one obtains a unified

MESGT, in which all the vector fields transform irreducibly under the simple automor-

phism group Aut(JA

(1,N)) of that Jordan algebra. For A = R, C, H one obtains in this way

three infinite families of physically acceptable unified MESGTs (one for each N ≥ 2).

In table 1 below, we list all the simple Lorentzian Jordan algebras of type JA

(1,N),

their automorphism groups, and the numbers of vector and scalar fields in the unified 5D

MESGTs defined by them.

Note that the number of vector fields for the theories defined by JR

(1,3), JC

(1,3) and JH

(1,3)

are 9, 15 and 27, respectively. These are exactly the same numbers of vector fields as in

the magical theories based on the norm forms of the Euclidean Jordan algebras JC
3 , JH

3

10In unified YMESGTs all the vector fields, including the graviphoton, transform in the adjoint repre-

sentation of a simple gauge group.
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J D Aut(J) No. of vector fields No. of scalars

JR

(1,N)
1
2 (N + 1)(N + 2) SO(N, 1) 1

2N(N + 3) 1
2N(N + 3) − 1

JC

(1,N) (N + 1)2 SU(N, 1) N(N + 2) N(N + 2) − 1

JH

(1,N) (N + 1)(2N + 1) USp(2N, 2) N(2N + 3) N(2N + 3) − 1

JO

(1,2) 27 F4(−20) 26 25

Table 1: List of the simple Lorentzian Jordan algebras of type JA

(1,N). The columns show, re-

spectively, their dimensions D, their automorphism groups Aut(JA

(1,N)), the number of vector fields

(ñ + 1) = (D − 1) and the number of scalars ñ = (D − 2) in the corresponding MESGTs.

and JO

3 , respectively (cf. eq. (7.1)). As was shown in [43], this is not an accident; the

magical MESGTs based on JC
3 , JH

3 and JO

3 found in [14] are equivalent (i.e. the cubic

polynomials V(h) agree) to the ones defined by the Lorentzian algebras JR

(1,3), JC

(1,3) and

JH

(1,3), respectively. This is a consequence of the fact that the generic norms of the degree

3 simple Euclidean Jordan algebras JC
3 , JH

3 and JO

3 coincide with the cubic norms defined

over the traceless elements of degree four simple Lorentzian Jordan algebras over R, C and

H [43]. This implies that the only known unified MESGT that is not covered by the table

1 is the magical theory of [14] based on the Euclidean Jordan algebra JR
3 with (ñ + 1) = 6

vector fields and the target space M = SL(3, R)/SO(3). Except for the theories defined by

JR

(1,3), JC

(1,3) and JH

(1,3) the scalar manifolds of MESGTs defined by other simple Lorentzian

Jordan algebras are not homogeneous.

Of these three infinite families of unified MESGTs in five dimensions only the family

defined by JC

(1,N) can be gauged so as to obtain an infinite family of unified YMESGTs with

the gauge groups SU(N, 1) [43]. As for the family defined by the quaternionic Lorentzian

Jordan algebras JH

(1,N), they can be gauged with the gauge groups SU(N, 1) while dualizing

the remaining N(N + 1) vector fields to tensor fields in five dimensions.

Let us now analyze the dimensional reduction of the 5D YMESGTs with the gauge

group SU(N, 1) coupled to N(N + 1) tensor fields. From the results of section 6 it follows

that the corresponding four dimensional theory is dual to a standard N = 2 YMESGT

with the gauge group SU(N, 1) n HN(N+1)+1. However, the group SU(N, 1) n HN(N+1)+1

can be obtained by contraction from the simple noncompact group SO∗(2N + 2). This is

best seen by considering the three graded decomposition of the Lie algebra of SO∗(2N +2)

with respect to the Lie algebra of its subgroup SU(N, 1) × U(1)

so
∗(2N + 2) = g

−1 ⊕ [su(N, 1) × u(1)] ⊕ g
+1

where grade +1 and −1 subspaces transform in the antisymmetric tensor representation

of SU(N, 1) and its conjugate, respectively. By rescaling the generators belonging to the

grade ±1 spaces and redefining the generators in the limit in which the scale parameter

goes to infinity one obtains the Lie algebra isomorphic to the Lie algebra of SU(N, 1) n

HN(N+1)+1. Such contractions arise in the pp-wave limits of spacetime groups and were

– 28 –



J
H
E
P
0
1
(
2
0
0
6
)
1
6
8

studied in [46]. We shall denote the contracted algebra as CSO∗[2N + 2‖U(N, 1)]. For

N = 3, CSO∗[8‖U(3, 1)] coincides with the contraction of SO∗(8) denoted as CSO∗(6, 2)

by Hull [23] since SO∗(6) is isomorphic to SU(3, 1).

Now the MESGT theory defined by JH

(1,3) can be gauged directly in four dimensions so

as to obtain a unified YMESGT with the gauge group SO∗(8) = SO(6, 2). By contracting

this unified theory, one can obtain the CSO∗[8‖U(3, 1)] = CSO∗(6, 2) gauging directly in

four dimensions, which is consistent with the above observation.

In [31] it was pointed out that the three infinite families of 4D MESGTs defined by

Lorentzian Jordan algebras might admit symplectic sections in which all the vector fields

transform irreducibly under the reduced structure groups of the corresponding Jordan

algebras. Since their reduced structure groups are simple they would be unified MESGTs

in four dimensions as well. Of these three infinite families of unified MESGTs only the

family defined by the quaternionic Jordan algebras JH

(1,N) could then be gauged so as to

obtain unified YMESGTs with gauge groups SO∗(2N +2) in four dimensions. The fact that

the dimensional reduction of the five dimensional gauged YMESGTs with gauge groups

SU(N, 1) coupled to N(N +1) tensor fields leads to contracted versions of the SO∗(2N +2)

gauged YMESGTs is evidence for the existence of this infinite family of unified YMESGTs.

8. Some comments on the scalar potential

We already mentioned in the Introduction that 5D noncompact YMESGTs with tensor

multiplets and R-symmetry gauging provide the only known examples of stable de Sitter

ground states in higher-dimensional gauged supergravity theories [24, 27]. In this paper,

we considered the dimensional reduction of 5D YMESGTs with tensor fields (but without

R-symmetry gauging) to 4D and found that the resulting theories have non-Abelian non-

compact gauge groups in 4D which are of the form K nHnT +1. Non-compact non-Abelian

gauge groups were also found essential for stable de Sitter vacua in 4D, N = 2 supergravity

in [26]. Interestingly, the vectors that gauge the Heisenberg algebra require a symplectic

rotation relative to the vector fields that gauge the 5D part K of the 4D gauge group in

order to bring the 4D gauging into the standard block diagonal form. Apart from the semi-

direct vs. direct structure, this is reminiscent of the de Roo-Wagemans angles that were

also found to be important for stable de Sitter ground states in 4D, N = 2 supergravity

in [26]. As a third ingredient for stable de Sitter vacua in 4D, N = 2 supergravity, the

authors of [26] identified gaugings of the R-symmetry group, which are also important in

5D [24, 27].

One might now wonder whether these findings might perhaps have something to with

each other. Let us therefore take a look at the scalar potential of the dimensional reduced

YMESGTs with tensor fields. From eq. (4.37), we have

P = e−σP (T )(hĨ) +
3

4
e−3σ ◦

a
Ĩ J̃(AIM Ĩ

IK̃
hK̃)(AJM J̃

JL̃
hL̃) (8.1)

where the first term is simply the dimensional reduction of the 5D scalar potential and the

second term comes from the 5D kinetic term of the scalar fields. If we had instead started
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from a 5D, N = 2 YMESGT with tensor fields and R-symmetry gauging, we would have

gotten an additional term in 4D of the form

e−σP (R)(hĨ) (8.2)

which is just the dimensional reduction of the 5D scalar potential due to the R-symmetry

gauging (the R-symmetry gauging does not affect the scalar fields, and therefore there is

no analogue of the second term of eq. (8.1) in addition to the already existing one.). It is

easy to convince oneself that the second term in (8.1) is a positive definite real form for the

AI . A solution with 〈AI〉 = 0 is therefore a solution without tachyonic directions in the

AI space. The first term in (8.1) and the term (8.2) only depend on the hĨ and σ. Setting

the hĨ equal to their values that are known to lead to a stable de Sitter vacuum in five

dimensions in the models discussed in [24, 27] would then lead to a de Sitter point in 4D as

well with the hĨ having positive masses. Unfortunately, however, this point would not be a

critical point of the potential due to the runaway behaviour in the σ direction. In order to

fix σ at finite values, one would have to allow the second term in (8.1) to be non-zero. But

then one would have to be at a point where 〈AI〉 6= 0, which might require other values of

the hĨ that no longer correspond to the stable de Sitter vacua that are known from five

dimensions.

A careful investigation of the scalar potential (8.1) perhaps together with a gauging of

the 4D R-symmetry group might lead to many interesting types of critical points, but is

beyond the scope of this paper.

A. Details of the dimensional reduction

This appendix lists the the dimensional reductions of the individual terms of the La-

grangian (3.9) using the decompositions (4.1), (4.3) and (4.32).

A.1 The Einstein-Hilbert term

The Einstein-Hilbert term in (3.9) leads to the same four-dimensional terms as in the

ungauged case,

L(5)
E.-H. ≡ −1

2
êR̂ ⇒

e−1L(4)
E.-H. = −1

2
R − 1

2
e3σWµνW µν − 3

4
∂µσ∂µσ (A.1)

A.2 The ĤĤ-term

The ĤĤ-term in (3.9) reduces to

L(5)

ĤĤ
≡ −1

4
ê
◦
a

Ĩ J̃ĤĨ
µ̂ν̂ĤJ̃µ̂ν̂ ⇒

e−1L(4)

ĤĤ
= −1

4
eσ ◦

aIJ(FI
µν + 2WµνAI)(FJµν + 2W µνAJ)

−1

2
eσ ◦

aIM (FI
µν + 2WµνAI)BMµν − 1

4
eσ ◦

aMNBM
µνBNµν
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−1

2
e−2σ ◦

aIJ(DµAI)(DµAJ) − e−2σ ◦
aIM (DµAI)BµM

−1

2
e−2σ ◦

aMNBM
µ BµN , (A.2)

where

DµAI ≡ ∂µAI + gAJ
µf I

JKAK (A.3)

FI
µν ≡ 2∂[µAI

ν] + gf I
JKAJ

µAK
ν . (A.4)

A.3 The scalar kinetic term

Using (2.5) and

K x̃
I (∂x̃hĨ) = M Ĩ

(I)J̃
hJ̃ , (A.5)

the 5D scalar kinetic term can be rewritten as

L(5)
scalar ≡ − ê

2
gx̃ỹ(D̂µ̂ϕx̃)(D̂µ̂ϕỹ) = −3ê

4

◦
a

Ĩ J̃(D̂µ̂hĨ)(D̂µ̂hJ̃ ), (A.6)

where

D̂µ̂hĨ ≡ ∂µ̂hĨ + gÂI
µ̂M Ĩ

IK̃
hK̃ . (A.7)

Upon dimensional reduction, this becomes

L(4)
scalar = −3e

4

◦
a

ĨJ̃(DµhĨ)(DµhJ̃)

−3e

4
g2e−3σ ◦

a
Ĩ J̃(AIM Ĩ

IK̃
hK̃)(AJM J̃

JL̃
hL̃), (A.8)

where now the covariant derivative is with respect to the Kaluza-Klein invariant vector

fields, AI
µ,

DµhĨ ≡ ∂µhĨ + gAI
µM Ĩ

IK̃
hK̃ . (A.9)

A.4 The Chern-Simons term

The 5D Chern-simons term

ê−1L(5)
C.S. ≡

ê−1

6
√

6
CIJK ε̂µ̂ν̂ρ̂σ̂λ̂

{

F̂ I
µ̂ν̂F̂

J
ρ̂σ̂ÂK

λ̂
+

3

2
gF̂ I

µ̂ν̂ÂJ
ρ̂ (fK

LF ÂL
σ̂ ÂF

λ̂
)

+
3

5
g2(fJ

GHÂG
ν̂ ÂH

ρ̂ )(fK
LF ÂL

σ̂ ÂF

λ̂
)ÂI

µ̂

}

(A.10)

reduces as follows

e−1L(4)
C.S. =

e−1

2
√

6
CIJKεµνρσ

{

FI
µνFJ

ρσAK + 2FI
µνWρσAJAK

+
4

3
WµνWρσAIAJAK

}

(A.11)
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A.5 The B̂D̂B̂ term

Using the decomposition (4.32), the 5D B̂D̂B̂ term becomes

L(5)

B̂D̂B̂
≡ 1

4g
ε̂µ̂ν̂ρ̂σ̂λ̂ΩMN B̂M

µ̂ν̂D̂ρ̂B̂
N

σ̂λ̂

=
1

g
εµνρσΩMNBM

µν(∂ρB
N
σ + gAI

ρΛ
N
IP BP

σ )

+
1

g
εµνρσΩMNWµνB

M
ρ BN

σ +
1

2
√

6
CMNIε

µνρσBM
µνB

N
ρσAI . (A.12)

A.6 The 5D scalar potential

The 5D scalar potential term reduces to

L(5)
pot ≡ −êg2P (T ) = −g2ee−σP (T ). (A.13)

Putting everything together, and regrouping some terms, one then arrives at the di-

mensionally reduced YMESGT with tensor fields written in eq. (4.33).
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L. Sommovigo, Poincaré dual of D = 4 N = 2 supergravity with tensor multiplets, Nucl.

Phys. B 716 (2005) 248 [hep-th/0501048];

R. D’Auria, S. Ferrara, M. Trigiante and S. Vaulà, N = 1 reductions of N = 2 supergravity in
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